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A B S T R A C T   

Purpose: Automated diagnosis and prognosis of Alzheimer’s Disease remain a challenging problem that machine 
learning (ML) techniques have attempted to resolve in the last decade. This study introduces a first-of-its-kind 
color-coded visualization mechanism driven by an integrated ML model to predict disease trajectory in a 2- 
year longitudinal study. The main aim of this study is to help capture visually in 2D and 3D renderings the 
diagnosis and prognosis of AD, therefore augmenting our understanding of the processes of multiclass classifi-
cation and regression analysis. 
Method: The proposed method, Machine Learning for Visualizing AD (ML4VisAD), is designed to predict disease 
progression through a visual output. This newly developed model takes baseline measurements as input to 
generate a color-coded visual image that reflects disease progression at different time points. The architecture of 
the network relies on convolutional neural networks. With 1123 subjects selected from the ADNI QT-PAD 
dataset, we use a 10-fold cross-validation process to evaluate the method. Multimodal inputs* include neuro-
imaging data (MRI, PET), neuropsychological test scores (excluding MMSE, CDR-SB, and ADAS to avoid bias), 
cerebrospinal fluid (CSF) biomarkers with measures of amyloid beta (ABETA), phosphorylated tau protein 
(PTAU), total tau protein (TAU), and risk factors that include age, gender, years of education, and ApoE4 gene. 
Findings/results: Based on subjective scores reached by three raters, the results showed an accuracy of 0.82 ± 0.03 
for a 3-way classification and 0.68 ± 0.05 for a 5-way classification. The visual renderings were generated in 
0.08 msec for a 23 × 23 output image and in 0.17 ms for a 45 × 45 output image. Through visualization, this 
study (1) demonstrates that the ML visual output augments the prospects for a more accurate diagnosis and (2) 
highlights why multiclass classification and regression analysis are incredibly challenging. An online survey was 
conducted to gauge this visualization platform’s merits and obtain valuable feedback from users. All imple-
mentation codes are shared online on GitHub. 
Conclusion: This approach makes it possible to visualize the many nuances that lead to a specific classification or 
prediction in the disease trajectory, all in context to multimodal measurements taken at baseline. This ML model 
can serve as a multiclass classification and prediction model while reinforcing the diagnosis and prognosis ca-
pabilities by including a visualization platform.   

1. Introduction 

The challenges of understanding AD and its prodromal stages are 
associated with the meaningful interpretation of the interplay between 
the different biomarkers for diagnosis, multiclass classification, and 
regression analysis, especially as it relates to the pathogenesis of the 

disease [1–5] and its early detection [6,7]. There is also wide-ranging 
deliberation on the nature of cognitive reserve [8,9], potentially 
biasing the neuropsychological examinations and, ultimately, the diag-
nosis. Additionally, there is the issue of chronology in the manifestation 
of amyloid-beta plaques and tau tangles [10–12] and their synergistic 
effects on AD pathology. We also need to consider APOE genotypes 

☆ The data used for this study can be found in the “QT-PAD Project Data” from the Alzheimer’s Disease Modelling Challenge [http://www.pi4cs.org/qt-pad-ch 
allenge]. 
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[13–15] for their association with a cognitive reserve and cortical 
thinning, as well as with its potential link to both amyloid-beta, tau 
aggregation, and the cerebrospinal fluid (CSF) biomarkers [16,17]. The 
central aim of all these studies is to identify the earliest manifestations of 
AD to take preventive measures and provide early treatment/thera-
peutic interventions [18,19]. 

Implementing machine learning is an effective way to approach the 
complex challenge of multimodal data [20–22]. However, ML models 
are not always easily interpretable. Visualization of the ML results can 
enhance our understanding of the inner workings of the algorithmic 
process in context to what it has learned from the baseline measure-
ments. The assertation here is that visualization will enhance the means 
to assess the importance of features and the interpretability of results 
[23–25]. 

Using the “QT-PAD Project Data” from the Alzheimer’s Disease 
Modelling Challenge [http://www.pi4cs.org/qt-pad-challenge], the 
proposed machine learning, named Machine Learning for Visualizing 
AD (ML4VisAD), construct aims to produce a color-coded visualization 
scheme with a unique tensorization method to yield images that express 
disease state and progression through the different time points in a 
longitudinal study. Although the goals of high accuracy in multiclass 
classification and prediction of disease trajectory using only baseline 
features is essential, the information provided visually by the ML4VisAD 
model brings forth subtle nuances of the machine learning decision- 
making process, which is especially crucial when dealing with con-
verter cases. Ultimately, the proposed visualization method exemplifies 
the challenges faced in multimodal and multiclass classification and the 
decision-making process. Visualization may also shed some light on the 
“black box” problem associated with machine learning. Moreover, 
ML4VisAD will also augment the deliberation process through a visual 
opportunity to reassess ambiguous cases, like the converter cases, to 
determine whether a misclassification happened or that the ML visual 
outcome is the one projecting a correct classification, although different 
from the target image. In such a case, clinicians could deliberate on the 
visual output in context to the available measurements. 

Along this line of research, the studies reported in [20,21] suggest 
that most machine/deep learning methods rely more often on data- 
related issues, proposed methodologies, and the different clinical as-
pects under study but ignore visualization. Similarly, most studies 
emphasize the relevant clinical features and the computational methods, 
which are more likely to produce high classification and prediction re-
sults [20,26,27]. Machine learning can also help develop medical im-
aging methods that address the challenging task of segmentation and 
noise removal [28–30]. Also, in [31], efforts are made at data reduction 
and using different data visualization techniques to embed complex 
information in 2-D images to reflect gene expression and clinical data for 
diagnosis. 

Several other studies focused their classification and prediction al-
gorithms on visualizing data in a dimensionally reduced decisional 
space. The dimensionality reduction methods typically involve the use 
of principal component analysis (PCA), locally linear embedding (LLE), 
latent profile analysis (LPA), 3D scattering transforms, and the concept 
of histones [32–45]. Traditionally, standard methods used to aid in the 
visualization and diagnosis of AD typically involve heat maps, brain 
connectivity maps, and specific AD signatures, such as Standard Uptake 
Value Ratios (SUVRs) of disease-prone brain regions [46–53]. All 
methods that address the challenge of high-dimensional data also use 
visualization methods that produce optimal decisional spaces helpful to 
the classification process but not necessarily geared towards facilitating 
a visual interpretation of a diagnosis and prognosis of the disease which 
ML4VisAD seeks to address. 

The manuscript’s structure is as follows: Section 2 provides the de-
tails of the data used in this study and the methods implemented, 
including the color-coding mechanism, the machine learning architec-
ture, and its computational capability. Section 3 reports the results of 
varying disease states and disease progression cases. Section 4 provides 

a discussion reflecting on the different findings and merits of the pro-
posed ML4VisAD model. Finally, Section 5 concludes with a retrospec-
tive on the contributions made, highlighting the complexity faced when 
using machine learning for multiclass classification and prediction in 
AD. 

2. Methods 

2.1. Study design 

Clinical data used in the preparation of this study is from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni. 
usc.edu). Only subjects that have a baseline (T0) scan (in at least one 
modality) and showed up for follow-up visits at T6 (6th month), T12 
(12th month), and T24 (24th month) have been considered in this study, 
leading to a total of 1123 subjects as shown in Table 1. ADNI categorizes 
these subjects into the three classes of CN, MCI, and AD at baseline and 
for each referral session. 

The input features used for each modality and the number of ob-
servations made at the different time points are obtained from the “QT- 
PAD Project Data” AD Modelling Challenge [http://www.pi4cs.org/qt- 
pad-challenge] as given in Table 2. Hence, inputs to the ML model 
contain features from the baseline, including MRI and PET sequences, 
demographic information, and specific cognitive measurements. Auto-
matically generated outputs of the ML network are images containing 
colorful strips expressing disease progression at different time points. It 
is important to emphasize that in designing this color-coded visualiza-
tion scheme, and to avoid any bias, we exclude the Mini-Mental State 
Examination (MMSE) and the Clinical Dementia Rating Sum of Boxes 
(CDR-SB) scores from the input feature space in the training and testing 
phases since both are used for the labeling of subjects. Furthermore, we 
also remove from consideration the Alzheimer’s Disease Assessment 
Scores (ADAS11, ADAS13) as they correlate well with MMSE and CDR- 
SB. Each feature f of the input feature vector, e.g. FDG, is normalized by 
mean normalization over all its non-missing values (set F) i.e. 
f normalized = ( f − mean(F) )/( max(F) − min(F) ). 

After normalization, we ensure the missing values do not affect 
network training. It is worth mentioning that the QT dataset implicitly 
reports values of some features as ABETA>1700, for example. For this 
reason, during preprocessing of the data, ABETA of those samples higher 
than 1700 or smaller than 200 have been replaced by 1700 and 200, 
respectively. Similarly, PTAU values greater than 120 and smaller than 8 
have been replaced by 120 and 8, respectively. Also, TAU values greater 
than 1300 and less than 80 are replaced by 1300 and 80, respectively. 

2.2. Color coding 

The adage “a picture is worth a thousand words,” together with the 
challenge imposed by both the variability and interrelatedness of the 
multimodal features, served as an incentive to create the ML4VisAD 
model. The (23×23×3) target images shown in Fig. 1 are color-coded 
and include a region of uncertainty (RU) represented by the black bar 
entry. We use the three (R, G, B) channels to represent the state of the 
disease with different colors, AD as red, Mild Cognitive impairment- 
MCI: as blue, and Cognitively Normal-CN as green. In this color-coded 
scheme, subjects that are stable over time would display a single color 
as in cases (a) through (c), and subjects who convert at specific time 
points to other states would display two or more colors as in cases (d) 
through (g). 

Cognitive status through a 24-month timeline (including baseline T0 
and three referral sessions T6 (6th month), T12 (12th month), and T24 
(24th month) define trajectories of the disease state. To assess the degree 
of uncertainty that the machine learning model may inject into the 
process, we add a black bar after the bar representing the T24 time point. 
This black bar could be situated anywhere in this display and is there 
solely to estimate the degree of uncertainty the ML model injects into the 
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visual output through its many inner computations. The assertion here is 
that a perfect ML model should leave the black bar unchanged (i.e., zero 
effect), meaning that the ML model is stable and has performed its task 
reliably. The size 23 × 23 of the RGB image could have been of any NxN 
dimension. In the discussion section, we explain that a target image with 
a higher resolution (e.g., 45 × 45) would provide an output image that is 
more detailed and with smoother transition phases. However, the ML 
model will need more convolutional layers with a higher N; hence, the 
need for more training/processing time, as explained in Section 2.4. 

2.3. Machine learning architecture 

In the machine learning architecture shown in Fig. 2, the overall 
objective was to model a network estimator E in which Itarget =

E(x1, x2, x3, x4, x5) is a colorful image similar to those shown in Fig. 1, 
and where the input space is the multimodal features of 

{x1, x2, x3, x4, x5} in which each vector xm comprises the extracted 
measurements from modality m at baseline. Features extracted from 
MRI, PET, CSF, cognitive tasks, and the risk factors, as shown earlier in 
Table 2, serve as input to the ML4VisAD model. The network is designed 
to have two parts (p1,p2) such that the initial layers address the intra/ 
inter-modality feature extraction via fully connected layers (p1, ) and 
the second part involves tensorization, extra feature extraction and 
image production (p2). Thus, Ipredicted = p2( p1(x1, x2, x3, x4, x5) ) and the 
difference between Ipredicted and Itarget are optimized for each observation/ 
patient. 

With the fully connected layers, the network converts the basic 
features for each modality into a primary representation space. Layers 
L0, L1, and L2 are to transform the features extracted from MRI, PET, 
CSF, neurocognitive measurements, and risk factors into an initial 
feature space representation specific to each modality. The size of the 
input node in layer L0 for each modality m is the length of the input 

Table 1 
Study population and subgroups. 

Categories based on diagnosis Categories based on conversion
Number of samples # Total # Description

CN 329 Stable Normal

Others 8 Others (e.g. MCI to CN)

Im
p

ai
re

d

AD 163 Stable Dementia

MCI 442 Stable MCI

MCIc 181 MCI converter to AD

786 Total Impaired

1123 Total

CN AD MCI

Baseline 331 163 629 1123
6th month 331 195 597 1123
12th month 332 243 548 1123
24th month 334 342 447 1123

Table 2 
ADNI (QT-pad challenge) dataset with the features extracted from each modality/source at baseline.  

Number of subjects: 1123 

Modality Feature Minimum Value Average Value Maximum Value Number of missed values at baseline 

MRI Ventricular volume  5650.0  39,420.220  145,115.0  39 
Hippocampus volume  3091.0  6798.67  10,769.0  158 
Whole Brain volume  738,813.0  1,022,118.21  1,443,990.50  18 
Entorhinal Cortical thickness  1426.0  3507.23  5896.0  160 
Fusiform  8991.0  17,354.76  26,280.0  160 
Middle temporal gyrus  9375.0  19,545.76  29,435.0  160 
Intracranial volume (ICV)  1,116,279.11  1,536,383.48  2,072,473.30  8 

PET ‘FDG’  0.69  1.24  1.707168  321 
Pittsburgh Compound-B (PIB)  1.18  1.53  1.89  1116 
‘AV45’  0.83  1.19  2.02  614 

Cognitive Test RAVLT immediate  7.0  35.59  71.0  3 
RAVLT learning  − 2.0  4.29  11.0  3 
RAVLT forgetting  − 5  4.35  13.0  3 
RAVLT percforgetting  − 100.0  57.37  100.0  4 
Functional Activities Questionnaires (FAQ)  0.0  3.73  30.0  4 
Montreal Cognitive Assessment (MoCA)  10.0  23.78  30.0  616 
Everyday Cognition (Ecog): ‘EcogPtMem’  1.0  2.12  4.0  613 
Ecog: ‘EcogPtLang’  1.0  1.73  4.0  612 
Ecog: ‘EcogPtVisspat’  1.0  1.37  4.0  614 
Ecog: ‘EcogPtPlan’  1.0  1.40  4.0  612 
Ecog: ‘EcogPtOrgan’  1.0  1.48  4.0  624 
Ecog: ‘EcogPtDivatt’  1.0  1.79  4.0  615 
Ecog: ‘EcogPtTotal’  1.0  1.67  3.82  612 
Ecog: ‘EcogSPMem’  1.0  2.01  4.0  615 
Ecog: ‘EcogSPLang’  1.0  1.56  4.0  614 
Ecog: ‘EcogSPVisspat’  1.0  1.38  4.0  622 
Ecog: ‘EcogSPPlan’  1.0  1.50  4.0  616 
Ecog: ‘EcogSPOrgan’  1.0  1.57  4.0  638 
Ecog: ‘EcogSPDivatt’  1.0  1.78  4.0  621 
Ecog: ‘EcogSPTotal’  1.0   3.89  614 

CSF Amyloid Beta (ABETA)  200.0  984.94  1700.0*  335 
phosphorylated tau protein (PTAU)  8  27.45  94.86  335 
Total tau protein (TAU)  80  284.98  816.9  335 

Risk factors Age  55.0  73.93  91.4  0 
years of education  6.0  15.92  20  0 
APOE4  0  0.56  2  0 
Gender     0  
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feature vector nm = length(xm), which then goes through two more fully 
connected layers, L1 and L2, with 2 × nm and nm nodes, respectively, 
followed by linear activation layers. The previous fully connected layers 
of L2 are integrated into L3 by concatenating the outputs of the L2 layer 
to initiate the inter-modality feature space and create a new modality 
representation. We accomplish feature fusion and feature extraction in 
the inter-modality phase using concatenation (L3) and a fully connected 
layer (L4). 

Layers L5 to L9 are for tensorization and two reasons were in mind: 
(1) since the input data format to our network consists of vectors from 
different modalities, and the target output is a colorful image, we needed 
to reshape the vectors to matrices to generate colorful 2-D images. 2) 
Layers L0 to L4 were necessary to use information from the different 
modalities and model progression of the disease. However, combining 
the features from different modalities in a standard network may not 

consider the heterogeneity of the data. Using a non-linear mapping 
function to transform the feature space into a higher-dimensional 
receptive field can help the network identify more significant 
relationships. 

Our network architecture utilizes reshaping and convolutional neu-
ral layers for tensorization and extracting higher-order features from 
multimodal features. A tensor with dimensions of 10 × 10 × 30 is 
generated using the following steps through layers L5, L6, and L7. Layer 
L5 reshapes the 100-node output vector of layer L4 to create a 2D tensor 
with dimensions of 10 × 10. Layer L6 conducts 2D transpose convolu-
tional filtering with three different dilation rates 1, 2, and 3. For each 
dilation rate, we have ten kernels with 3 × 3 kernel size, the stride of 1, 
and padding of type same. Layer L7 is a concatenation of the three output 
tensors from layer L6. Layer L8 is also a 2D transpose convolution but 
with 100 kernels of size 3 × 3 and a stride of 2. Lastly, the L9 produces 

(a) (b) (c)

            (d)                                     (e)             (f)                           (g)         

Fig. 1. Designed target images showing: (a) stable CN, (b) stable MCI, (c) stable AD, (d) CN converting to MCI at T24 (24th month), e, f, and g are MCI that 
progressed to AD at time points T6 (6th month), T12 (12th month), and T24 (24th month), respectively. 

Fig. 2. Designed architecture of the network with a color-coded visual output describing disease trajectory.  
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the output image Ipredicted by 2D transpose convolution with three kernels 
of size 3 × 3 and a stride of 1. Padding in layers L8 and L9 are of type 
valid, which does not include zero padding. 

Drop-out and batch normalization are also applied in layers L6, L8, 
and L9 to prevent overfitting. Design details and tensor dimensions for 
the different layers are shown in Fig. 2 as well. The GitHub repository 
(https://github.com/mohaEs/ML4VisAD) provides the implementation 
codes. 

2.4. Training and evaluation 

The loss function is the Mean Absolute Error (MAE) between the 
target image and the produced output (i.e., loss = MAE(Itarget − Ipredicted)). 
We use the 10-fold cross-validation over subjects, and in each training 
session, we use 10 % of the training set as a validation set (i.e., ten times 
of training data split to 81/9/10 % as train/validation/test). We use 
4000 epochs with a batch size of 500 to train the network. To produce a 
larger 45 × 45 image size is like the network shown in Fig. 2, but with 
the L8 layer replicated. The network makes use of the Keras TensorFlow 
deep learning frameworks. Using the GPU NVIDIA Geforce RTX 2080, 
Table 3 provides the processing time it took from feeding the input to the 
ML model to obtaining the visual outcome as a function of the image 
size. 

3. Results 

To demonstrate the merits of the visualization platform, we consider 
different scenarios, as shown in Fig. 3, that include stable subjects over 
time and subjects that transition from one state to another at different 
time points. All the results and supplementary materials are also avail-
able in the GitHub repository. These varied examples highlight the 
practical merits this color-coded visualization could have in facilitating 
diagnosis and prognosis. For each subject in the testing phase (not seen 
in the training phase), color-coded patterns are generated based solely 
on observed features at baseline. 

Fig. 3 provides several examples that reflect different target images 
and the respective visual outputs that the ML model produces in the test 
phase. The target image is on the left, and the ML visual output is on the 
right for each displayed case. To include different scenarios of all the 
1123 subjects considered, we show 4 cases each for the stable cogni-
tively normal (CN) group with the green-colored target at all four-time 
points in cases (a)-(d), stable mild cognitive impaired (MCI) with a 
blue-colored target in cases (e)–(h), eight different transition cases that 
include examples of subjects who transitioned from CN to MCI or from 
MCI to AD with one case from MCI to CN at different time points as 
illustrated in cases (i)-(p), followed by four examples of stable AD sub-
jects in cases (q)-(t), and lastly, we show few selected cases (all stable 
cases) that the ML model misclassified as belonging to a different stable 
disease state as shown in (u)-(w). 

For a more meaningful assessment of disease trajectory, as we 
consider all these different cases, context is provided in Fig. 3 for 
augmented interpretability of the challenging cases. For this added 
context, we provide MMSE, CDR-SB, and RAVLT scores for all four-time 
points (T0, T6, T12, and T24), age, sex, years of education, the APOE, 
AV45, FDG, TAU, ABETA, number of missing features at baseline, and 
graphs of the SUVR measurements at T0 (baseline) and T24 (24th 

month), where the x-axis reflects the different brain regions for the 
SUVRs as annotated in Table 5. The scores/values used for MMSE and 
CDR-SB conform to the standards defined by ADNI. The APOE value of 
0,1 or 2 specifies a carrier of zero, one, or two APOE e4 alleles. For all 
these displayed cases, the intent here is to use such context to deliberate 
on what may have led to the differences between target images and the 
ML visual outcomes. The Discussion section provides more details. 
Notice that the legend of Fig. 3 includes patients’ Record ID (RID) for 
other researchers interested in validating these results or who would like 
to perform further analysis given the nuances of the ML visual outputs 
that differ from their target images. 

Furthermore, to acquire feedback from the research community on 
the practicality of this visualization platform, an online survey provided 
in the Appendix was conducted using the Qualtrics platform and shared 
via Facebook and LinkedIn. More than 100 persons participated in this 
survey globally, confirming the importance of the proposed method in 
its ease of use and in facilitating the decision-making process. This 
survey shows that 83.49 % of participants agree that the visual repre-
sentation is easy to remember and interpret, with 79.55 % stating that 
they would prefer to receive the results in a graphic format. With an 
overwhelmingly favorable rating of 82.35 % in terms of ease of 
memorizing/remembering the output through visualization and 73.79 
% agreeing that the visualized form speeds up the decision-making 
process. As for the level of uncertainty (i.e., trustfulness of the 
output), 81.65 % stated that different levels of trustfulness are visible in 
the visualized format. These are very encouraging results, and the 
feedback received would allow us to continue improving the platform. 

In addition to these survey results, three raters (M.E., S.T., and M.S.) 
independently reviewed all ML-generated visual outcomes for both 
types of classification: 3-way (C.N., impaired, others) and 5-way (CN, 
MCI, MCIc, AD, others) using a developed MATLAB-based user interface 
(demo: https://youtube/yQWFo33RYiQ). Each rater is to view each ML 
visual output and classify it. “Others” include those that converted back 
to CN from MCI or to MCI from AD. The results in Table 4 show that 
when using a 3-way classification, the ML model was relatively accurate 
with an 82 % ± 3 % accuracy, and for a 5-way classification, the accu-
racy dropped to 68 % ± 5 %. The achieved accuracy is consistent with 
state-of-the-art literature. 

We observe that most stable cases were classified correctly and that 
the misclassified cases often were those that experienced a transition 
phase of the disease. From the examples shown in Fig. 3, cases (a), (b), 
(k), (n), and (q) clearly show that the ML visual outcome agrees with the 
target image. Even in cases like (c), (e), (o), and (r), although the ML 
outcome is slightly different from the target, they are still mostly similar, 
and the three raters had no problem classifying them correctly. How-
ever, for these last three cases, although the changes were minor, this 
could still lead to a misclassification with a strict rater or when relying 
solely on machine learning without the benefit of visual output. The 
intent here is to initiate a conversation contrasting the visual outcome of 
the ML model in context to all the quantitative measures known during 
the different time points of this longitudinal study. Through these many 
nuanced visual versions of the ML model in contrast to the target image, 
we could appreciate the difficulties typically faced in reaching high 
classification results, especially in multiclass classification and longitu-
dinal studies. 

It is fascinating to note from the results shown in Fig. 3 that although 
we exclude the neuropsychological test scores MMSE, CDR-SB, and 
ADAS from the training and testing phases of the ML model, these 
cognitive scores still show significant consistency with the outcome of 
the machine learning. For example, in case (c), the stable CN is shown to 
transition to MCI in T12 and T24 just as the CDRSB scores changed from 
0 to 0.5, which indicates questionable impairment in the staging cate-
gory [59], even when the MMSE score is stable at 30, which is the 
maximum score one can get. Case (h) is another interesting outcome of 
the ML model, as it shows a transition to AD in T24 due perhaps to the 
change of the CDR-SB score to 3 and 2.5, respectively, with a score of 3 

Table 3 
Processing time of machine learning model.  

Image size 
(pixels) 

Trainable 
parameters 

Train time (s) Test time per 
subject (s) 

23 × 23  36,143 4000 epochs: 
275.67  

0.008 

45 × 45  126,443 4000 epochs: 
987.94  

0.017  
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indicating very mild dementia in the staging category. Note also for this 
case that the MMSE dropped from 30 to 27, with mild AD defined in the 
21–26 range. Another case that is hard to explain is (j), which we define 
as “other” in the classification categories. In this case, it seems that the 

MCI patient reverted to CN at T24, yet the ML model determined that 
this is a case of a stable CN. In such cases, where the MMSE scores, as 
well as the CDR-SB, are ambiguous from the diagnosis standpoint at 
baseline, such cases should be reviewed in context to all other inputs to 

Fig. 3. Visualization of AD: The left and right images in each sub-figure are target and ML visual output for test subjects, respectively. (a) through (d) show 4 
different cases of stable CN subjects; (e) through (h) 4 different cases of stable MCI subjects; cases (i) through (p) show subjects who have transitioned either from CN 
to MCI or from MCI to AD at different time points; cases (q) through (t) show 4 different cases of stable AD subjects. Cases (u), (v) and (w) in the last row are 
challenging stable cases where the ML outcome is completely different than the target. 
* The patient/record (RIDs) of the shown cases of ADNI dataset are as follow: a) 4491, b) 4376, c) 4422, d) 4421, e) 4531, f) 2068, g) 4871, h) 4346, i) 4277, j) 4813, 
k) 2047, l) 4426, m) 4595, n) 4167, o) 4542, p) 4189, q) 4252, r) 4338, s) 4494, t) 4001, u) 4226, v) 4339, and w) 4676. 
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the ML model to look into the neuroimaging data and other cognitive 
scores to determine what led to this transition in the diagnosis at base-
line. Case (i) is also interesting, where a stable CDR-SB of 0 scores 
(which means no impairment) and high MMSE scores from 28 to 30, the 
ML model is attempting to render visually a stable CN instead of the 
clear transition to MCI seen in the target image. The more complex cases 
of (m) and (p) may reveal that the ML model does struggle at times when 
the MMSE scores and CDR-SB scores vary in ways that are difficult to 

decipher from one phase in time to another with the target image 
reflecting the diagnosis at baseline may be the correct one. Cases (s) and 
(t) are misclassified, especially given the low MMSE scores and the high 
CDR-SB scores; note, however, the high number of missing values for 
case (t). With these examples discussed, we highlight the merits of such a 
visualization process where these types of contextual deliberations 
would not otherwise be possible if we relied solely on the ML classifi-
cation algorithm without recourse to a visualized output. 

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing 
Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4531 24 26 26 23 3.5 3 2 2.5 15 16 22 17 M 1 20 73.7 1.32 1.26 1.13 1.14 185 - 464 4

(e)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

2068 28 23 26 27 1 1 1 1 32 20 29 33 M 1 20 83.1 1.57 1.46 1.19 1.11 322 351 722 656 1

(f)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4871 29 30 28 30 1 1.5 1.5 1 52 43 52 47 F 0 14 66.4 1.07 1.01 1.34 - 162 - 1244 - 1

(g)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4346 29 30 29 27 1.5 2.5 3 2.5 44 39 33 37 M 2 18 71.3 1.26 1.21 1.23 1.23 288 293 664 624 1

(h)

Fig. 3. (continued). 
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By having recourse to a visual outcome, we could reassess chal-
lenging cases to determine what could have led to such an ML outcome 
and whether there is more reason to assert a misclassification or instead 
accept the ML outcome as the more appropriate diagnosis. When 
reviewing these challenging cases, as illustrated in Fig. 3, recall that the 
target image is on the left, and the ML visual outcome is on the right. 
Furthermore, when deliberating on which outcome could be more 
telling or more convincing, review the provided MMSE and CDR-SB 
scores as well as all other features provided in the figure as context. 

Remember that MMSE, CDR-SB, and ADAS were excluded from 
consideration in the training and testing phases when we designed this 
ML model. 

3.1. Comparison to other methods 

Since the classification results of our proposed method rely on an 
agreement reached between the three raters looking at the visual out-
comes of the machine learning independently, it is not straightforward 

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4277 28 30 28 30 0 0 0 0 52 48 51 63 F 0 18 71.4 1.37 - 1.50 - 232 - 2717 - 2

(i)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4813 29 29 27 27 1 1 1 1 61 56 45 45 M 0 16 67.6 1.22 1.20 1.28 - 220 214 2198 2330 1

(j)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing 
Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

2047 27 27 26 28 2.5 4.5 6 5.5 26 33 33 25 M 1 18 77.4 1.70 1.67 1.44 1.45 404 424 709 723 1

(k)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4426 28 27 29 26 5.5 2 2.5 2.5 29 20 29 22 M 0 16 77.2 0.92 0.89 1.37 1.31 188 207 819 840 1

(l)

Fig. 3. (continued). 
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to compare our results with other methods quantitively. But for a fair 
comparison with the proposed method, we review below only the results 
of other studies that relied on multiclass classification methods that 
involved at least 200 subjects from the ADNI data set. Liu et al. (2018) in 
[54] considered the baseline ADNI-1 dataset, which contained 181 AD 
subjects, 226 control normal (CN), 165 progressive (or converter) MCI 
(pMCI), and 225 stable MCI or non-converters (sMCI) subjects; and in 
the baseline ADNI-2 dataset, there were 143 AD, 185 NC, 37 pMCI, and 

234 sMCI subjects. By using a CNN model for joint regression and 
classification tasks, they refer to as a deep multitask multichannel 
learning (DM2L) framework; they reached an accuracy of 51.8 % in a 
four-way (CN, sMCI, pMCI, AD) classification process (this 4-way clas-
sification is similar to our 5-way results due to they removed the others 
cases). Another study by Zhu et al. (2016a) [55] considered 202 subjects 
using baseline MRI and PET images, which included 51 AD subjects, 52 
Normal Control (NC) subjects, and 99 MCI subjects. Of the 99 MCI, 43 

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4595 26 27 24 20 3.5 2.5 4.5 8 26 14 28 10 M 0 16 76.6 1.69 1.59 0.94 1.02 480 621 957 781 1

(m)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4167 28 25 23 21 3 3 3 5 24 23 23 24 F 1 16 69.5 1.54 1.35 0.93 0.84 301 281 645 519 2

(n)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing 
Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4542 25 23 21 20 4 4.5 5 7 25 11 21 17 F 2 16 79.3 1.24 1.33 1.15 1.00 380 409 479 256 1

(o)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4189 28 26 24 24 2.5 4 3 7 35 27 17 30 F 1 15 73.1 1.31 1.25 1.26 1.18 462 474 545 695 1

(p)

Fig. 3. (continued). 
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were converters (MCI-C), and 56 were non-converters (MCI-NC). Their 
4-way (CN, MCI-C, MCI-NC, AD) yielded just over 61 % accuracy. 
Another study by Shi et al. (2018) [56] developed a method to perform 
both tasks of binary and multiclass classification on the same 202 sub-
jects used in Zhu et al. (52 CN, 43 MCI-C, 56 MCI-NC, and 51 AD), where 
they implement a two-stage stacked deep polynomial network, obtain-
ing an accuracy of 53.65 % in multiclass classification with higher ac-
curacies obtained as expected for binary classification. Lin et al. in [57] 
performed a multiclass classification on 746 subjects (200 NC, 441 MCI, 
and 105 AD subjects), with 110 of the 441 MCI subjects converting to AD 

at future time points in the three-year longitudinal study. These subjects 
of the 1800 subjects had all the measures the authors considered (MRI, 
PET, cerebrospinal fluid (CSF), and some genetic features). Their mul-
ticlass results based on a linear discriminant analysis (LDA) scoring 
method to fuse the multimodal data yielded an accuracy of 66.7 % for a 
three-way (CN, MCI, and AD) classification and a lower 57.3 % for a 
four-way classification with the MCI converters separated from the 
stable MCIs. Moreover, in earlier studies by our research group, a study 
by Fang et al. [58] considered 906 subjects (251 CN, 297 EMCI, 196 late 
MCI (LMCI), and 162 AD) subjects from the ADNI dataset, using the 

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4252 22 19 18 15 5 8 11 7 19 20 18 18 F 1 16 86.5 1.48 1.47 1.07 1.06 303 - 556 - 1

(q)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4338 21 19 24 18 6 6 7 11 14 21 17 20 M 0 14 80.5 0.94 0.95 1.02 0.90 321 311 1452 1366 9

(r)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4494 25 23 24 21 5.5 4.5 4.5 8 25 21 19 16 M 2 12 71.1 1.26 1.39 1.18 1.06 440 510 308 300 1

(s)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4001 20 19 14 16 5.5 10 10 14 - - - - F 0 9 88.5 1.51 - 1.11 1.12 321 586 294 406 6

Not Available

(t)

Fig. 3. (continued). 
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neuroimaging modalities of MRI and PET. A 4-way (CN, EMCI, LMCI, 
AD) multiclass classification, using a Gaussian discriminative compo-
nent analysis in a supervised dimensionality reduction algorithm, 
resulted in an accuracy of 67.69 %. In another study by Tabarestani et al. 
[26], 1117 subjects were considered (328CN, 441 MCI-NC, 191 MCI-C, 
157 AD), using kernelized and tensorized multitask network (KTMnet) 
for both prediction and multiclass classification. Combining features 
from PET, MRI, CSF, cognitive scores, and other risk factors that 
included age, gender, education, and the APOE gene, a 4-way (CN, MCI- 
C, MCI-NC, AD) resulted in a classification accuracy of 66.85 %. 

3.2. Extending the 2D visualization platform to 3D 

The design of the proposed ML model can display all these results in 
3D as well, as shown in Fig. 4. For 3D visualization, the L component of 
L-a-b format, a 3D variation of the CIE Chromaticity diagram, can be 

used to display in 3D the RGB format without changing the contextual 
meaning of the outcomes reflected in the examples considered in Figs. 4 
and 5. In this L-a-b format, L refers to lightness normalized from zero to 
1, and a and b reflect the colors from green to red for a and from blue to 
yellow for b. Fig. 4a and b show the target and ML output images, Fig. 4c 
and d illustrate the blue and red channels, respectively, and Fig. 4e 
through h provide the 3D displays of (a) through (d). Note the gradual 
change in the ML-generated visual outcomes. Observe that at T24 (24th 
month), the ML visual outcome in 4f stabilizes at the highest levels near 
the normalized value of 1. Moreover, observe that as the blue channel 
reflecting the MCI state declines rapidly between T12 and T24, the red 
channel in 4 h reflecting the AD state increases between T12 through 
T24 to stabilize at the maximum value of 1. Note how easy it is to 
ascertain the effect of the ML model has on the region of uncertainty in 
displays (f), (g), and (h). For the visual appreciation of this 3D display 
model, we provide four different cases (a), (b), (h), and (u) of Fig. 3 
displayed in 3D in Fig. 5. 

4. Discussion 

The results of ML4VisAD’s implementation show the need for deep 
reflection when assessing multiclass classification or prediction results 
using machine learning, especially when observing all the subtle nu-
ances of the visual outcome. There were a few cases where the ML4Vi-
sAD visual output seemed to make more sense than what the target 

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4339 29 29 24 29 1 0 0 0 26 31 34 26 M 2 17 84.3 1.41 1.46 1.37 1.53 264 - 481 - 1

(u)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4226 29 29 29 30 0.5 1 1 0.5 54 47 58 57 F 0 17 62.9 1.13 1.15 1.37 1.38 253 - 2219 - 1

(v)

RID
MMSE CDRSB RAVLT

immediate Gender APOE Edu
(y) AGE

AV45 FDG TAU ABETA Missing 
Features

T0 T6 T12 T24 T0 T6 T12 T24 T0 T6 T12 T24 T0 T24 T0 T24 T0 T24 T0 T24 T0

4676 25 26 28 25 3.5 3 1.5 2.5 30 21 36 31 M 1 19 78.8 0.94 0.98 1.20 - 450 - 3114 - 1

(w)

Fig. 3. (continued). 

Table 4 
Classification outcomes as assessed by three raters.  

Classification type Correctly 
classified 

Misclassified 
outcomes 

Inconclusive 
outcomes 

3-Way (CN, impaired, 
others) 

0.82 ± 0.03 0.15 ± 0.004 0.023 ± 0.002 

5-way (CN, MCI, MCIc, 
AD, others) 

0.68 ± 0.05 0.29 ± 0.01 0.023 ± 0.002  
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images portrayed, especially concerning the available measurements at 
the different time points. Case (j) shows a subject that transitioned back 
to normal control (CN) from an MCI diagnosis in the previous three time 
points. The ML model did not see it the same way and had the subject as 
stable CN through all four time points, and most measurements support 
this classification. Another example is case (l), where the target shows a 
transition from MCI to AD in T24, while the ML4VisAD visual output 
displays a stable MCI through all time points. Here again, the mea-
surements are somewhat ambiguous but more in favor of the ML model 
in that the MMSE did drop but only by one point in T24 compared to T6, 
and the CDR-SB scores are otherwise consistent through T6 to T24 with 
the SUVR also consistent in T0 and T24. Another interesting case is (v), 
where the target image shows a stable MCI, while the ML4VisAD visual 
output places this subject as stable CN. In this case, from the high MMSE 
score, the low SUVR values, and an APOE of 0, although the CDR is 0.5, 
the ML visual outcome of a stable CN seems more reasonable. But other 
cognitive tests (ADAS, RAVLT) may have influenced the diagnosis, and 
these scores were not used in the ML4VisAD model to avoid bias. In 
many of these cases, there may be some merits in generating a composite 
score, as proposed in [46]. Moreover, for cases (u), (v), and (w), all 
stable cases misclassified as another type of stable cases, there seems to 

be an influence of the APOE value on the ML4VisAD outcome (0 in-
fluences the CN state, 2 switched CN to MCI, and 1 reverted AD to MCI). 
See also findings reported in [53]. 

These ML visual outcomes clearly show why clinicians face difficulty 
each time they deliberate on a patient’s disease state. For example, it is 
hard to understand why the subject in case (u) in Fig. 3 had an MMSE 
score of 29 for T0, T12, and T24 but an MMSE score of 24 at time T6. 
Also, for the same patient in (u) the CDR score was 1 at T0 and reverted 
to 0 for all subsequent time points. Although the diagnosis is that of a 
stable CN for (u), the machine learning visual outcome places this sub-
ject as stable MCI when considering all other features. Recall that the 
APOE for (u) is 2 at baseline and that the SUVRs are relatively high. Also, 
the high number of years of education for this subject (17) may have led 
to the high MMSE scores of 29 for T0, T12, and T24, although stumbling 
in the test given at T6. 

The subtle nuances encountered with the ML4VisAD visual outcomes 
could reduce the misclassifications with added scrutiny on the visual 
output in context to specific measurements clinicians may be interested 
in. Consequently, the first point is that multiclass classification, whether 
it is automated or made through a rating process, does not allow for a 
more thorough deliberation process if these nuances and subtle 

Table 5- 
Brain regions for the SUVRs shown in Fig. 3.  

SUVR regions considered 

1) LH_CAUDALANTERIORCINGULATE 
2) LH_CAUDALMIDDLEFRONTAL 
3) LH_CUNEUS 
4) LH_ENTORHINAL 
5) LH_FRONTALPOLE 
6) LH_FUSIFORM 
7) LH_INFERIORPARIETAL 
8) LH_INFERIORTEMPORAL 
9) LH_INSULA 
10) LH_ISTHMUSCINGULATE 
11) LH_LATERALOCCIPITAL 
12) LH_LATERALORBITOFRONTAL 
13) LH_LINGUAL 
14) LH_MEDIALORBITOFRONTAL 
15) LH_MIDDLETEMPORAL 
16) LH_PARACENTRAL 
17) LH_PARAHIPPOCAMPAL 
18) LH_PARSOPERCULARIS 
19) LH_PARSORBITALIS 
20) LH_PARSTRIANGULARIS 
21) LH_PERICALCARINE 
22) LH_POSTCENTRAL 
23) LH_POSTERIORCINGULATE 

24) LH_PRECENTRAL 
25) LH_PRECUNEUS 
26) LH_ROSTRALANTERIORCINGULATE 
27) LH_ROSTRALMIDDLEFRONTAL 
28) LH_SUPERIORFRONTAL 
29) LH_SUPERIORPARIETAL 
30) LH_SUPERIORTEMPORAL 
31) LH_SUPRAMARGINAL 
32) LH_TEMPORALPOLE 
33) LH_TRANSVERSETEMPORAL 
34) RH_BANKSSTS 
35) RH_CAUDALANTERIORCINGULATE 
36) RH_CAUDALMIDDLEFRONTAL 
37) RH_CUNEUS 
38) RH_ENTORHINAL 
39) RH_FRONTALPOLE 
40) RH_FUSIFORM 
41) RH_INFERIORPARIETAL 
42) RH_INFERIORTEMPORAL 
43) RH_INSULA 
44) RH_ISTHMUSCINGULATE 
45) RH_LATERALOCCIPITAL 
46) RH_LATERALORBITOFRONTAL 

47) RH_LINGUAL 
48) RH_MEDIALORBITOFRONTAL 
49) RH_MIDDLETEMPORAL 
50) RH_PARACENTRAL 
51) RH_PARAHIPPOCAMPAL 
52) RH_PARSOPERCULARIS 
53) RH_PARSORBITALIS 
54) RH_PARSTRIANGULARIS 
55) RH_PERICALCARINE 
56) RH_POSTCENTRAL 
57) RH_POSTERIORCINGULATE 
58) RH_PRECENTRAL 
59) RH_PRECUNEUS 
60) RH_ROSTRALANTERIORCINGULATE 
61) RH_ROSTRALMIDDLEFRONTAL 
62) RH_SUPERIORFRONTAL 
63) RH_SUPERIORPARIETAL 
64) RH_SUPERIORTEMPORAL 
65) RH_SUPRAMARGINAL 
66) RH_TEMPORALPOLE 
67) RH_TRANSVERSETEMPORAL  

a) Target Image              b) ML Visual Outcome          c) ML Blue Channel          d) ML Red Channel 

e) L component of (a)        f) L component of (b)             g) 3D display of (c)              h) 3D display of (d) 

Fig. 4. 3D Display of the RGB channels of an MCI case that transitioned to AD at T24(24th month). Note the gradual change in the ML generated displays. Also note 
how minimally the ML model affected the region of uncertainty (RU) in the 3D displays in f, g and h. 
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a) Target Image b) ML Visual Outcome c) ML Red Channel d) ML Green Channel e) ML Blue Channel

f) L component of (a) g) L component of (b) h) 3D display of (c) i) 3D display of (d) j) 3D display of (e)

Fig. 5. 3D Display of the RGB channels of cases (a), (b), (h) and (u) from Fig. 3. Also note the minimal effects on the region of uncertainty (RU).  
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differences cannot be visually observed and would be so hard to deci-
pher otherwise through tabulated data or decisional spaces showing 
different overlapped regions among the considered classes. Therefore, it 
is no revelation that the more classes considered in a multiclass classi-
fication algorithm, the less accurate will the classification results be. 

4.1. Future work 

The proposed visual outcome enhances the processes of multiclass 
classification and disease projection with the ability to visualize the 
inner workings of the machine learning and observe what the differ-
ences between the ML visual outcome and target image could mean. In 
other words, the difference between them does not necessarily mean an 
outright misclassification but emphasizes the nuances between them 
and implies that a review is necessary of what may have led to such 
change, especially if the region of uncertainty (RU) in the visual display 
remains unaffected. 

It is thus essential to recognize that the interrelatedness in features, 
along with the many variations of such multimodal features, some being 
temporal, others structural, functional, metabolic, genetic, de-
mographic, or cognitive are extremely difficult to disentangle, especially 
when combined with subjective thresholds or ranges of scores such as 
with SUVRs, MMSE, and CDR-SB. When considering ADNI data, there is 
an overlap in MMSE scores between CN, MCI, and even AD groups, and 
the CDR-SB values may resolve this overlap. Still, for an ML model, more 
datasets are required to learn more of the interplay between such 
cognitive features, especially when used for baseline diagnosis. 

We contend that it is possible to define some objective criteria to 
quantify the uncertainty of the machine’s estimation per case/patient, 
which is one of the significant open problems for utilizing AI in medi-
cine. As a good first step, we included in our visual template a black bar 
that evaluates the amount of uncertainty infused by the machine 
learning model into the classification/prediction results. But we believe 
further investigation is needed to better understand this effect. For 
instance, we could investigate the checkerboard effects observed in 
cases (b) and (j) to determine what led to their presence. Are these ef-
fects due to the convolutions and other calculations performed by the 
ML model, or are they an indication of some subtle changes in the 
feature space of that specific patient that were not seen in the training 
phase? 

As for the number of classes considered in the study, the proposed 
method relied on the three primary RGB colors for the three groups (CN, 
MCI, AD) available in the dataset. However, suppose additional classes 
such as EMCI, LMCI, or aMCI are also available. In that case, we could 
always augment the primary color with the secondary colors of yellow, 
cyan, and magenta (Y, C, M) on the visual template. 

As it stands, from the availability of data, there were nearly four 
times more MCIs than AD and twice as many MCIs than CNs. Since the 
input features fed into the ML model were those acquired at baseline, a 
balance of samples between CN, MCI, and AD groups would be ideal in 
future implementations. Moreover, although ML4VisAD utilized 1123 
subjects, its efficacy could be enhanced by the availability of a much 
larger and more balanced dataset if the ML model in the training phase is 
to capture all the nuances that distinguish the different subgroups. 
ADRC centers and ADNI, who continue to build a much larger popula-
tion of the various subgroups for research with balanced data regarding 
ethnicity and disease state, are crucial to future experimentation. 

5. Conclusion 

The genesis of this study was to create a new approach for the 
visualization-based estimation of disease trajectory to augment the 
diagnosis and prognosis of AD. A new deep learning (DL) architecture 
based on Convolutional Neural Networks generates a visual image that 
portrays AD trajectory in a 2-year longitudinal study using baseline 
features only. From these baseline features, to avoid bias, we remove all 

cognitive scores MMSE, CDR-SB, and ADAS from consideration in the 
design of the ML model as the input features. Target images using 
different colors define each stage of the disease at the four observation 
time points (T0, T6, T12, and T24), with T0 being the baseline time 
point. A unique characteristic of this model is that it is trained with 
known target images with color-coded diagnoses at all four time points 
to generate a visual output that predicts disease trajectory based on 
baseline features only. Since we use only baseline features as input, this 
design is amenable to cross-sectional and longitudinal studies based on 
similar datasets. This research could also lead to new insights as to the 
gradual changes between transition phases as a function of the input 
feature space considered. 
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Anblagan D, et al. Machine learning of neuroimaging for assisted diagnosis of 
cognitive impairment and dementia: a systematic review. Alzheimers Dement 
2018;10:519–35. 

[23] Ezzati A, Zammit AR, Harvey DJ, et al. Optimizing machine learning methods to 
improve predictive models of Alzheimer’s disease. J Alzheimers Dis 2019;71(3): 
1027–36. 

[24] Tabarestani S, Aghili M, Eslami M, Cabrerizo M, Barreto A, Rishe N, Curiel RE, 
Loewenstein D, Duara R, Adjouadi M. A distributed multitask multimodal approach 
for the prediction of Alzheimer’s disease in a longitudinal study. Neuroimage 
February 2020;206:116317. 

[25] Donini M, Monteiro JM, Pontil M, Hahn T, Fallgatter AJ, Shawe-Taylor J, Mourão- 
Miranda J. Combining heterogeneous data sources for neuroimaging based 
diagnosis: re-weighting and selecting what is important. Neuroimage July 2019; 
195:215–31. 

[26] Tabarestani S, Eslami M, Cabrerizo M, Barreto A, Rishe N, Curiel RE, Barreto A, 
Rishe N, Vaillancourt D, DeKosky ST, Loewenstein DA, Duara R, Adjouadi M. 
A tensorized multitask deep learning network for progression prediction of 
Alzheimer’s Disease. Front Aging Neurosci May 2022;14:810873. https://doi.org/ 
10.3389/fnagi.2022.810873. PMID: 35601611. 

[27] Shojaie M, Tabarestani S, Cabrerizo M, DeKosky ST, Vaillancourt DE, 
Loewenstein D, Duara R, Adjouadi M. PET imaging of tau pathology and amyloid-β, 
and MRI for Alzheimer’s disease feature fusion and multimodal classification. 
J Alzheimers Dis 2021;84(4):1497–514. https://doi.org/10.3233/JAD-210064. 
PMID 34719488. 

[28] Ranjbarzadeh R, Caputo A, Tirkolaee EB, Ghoushchi SJ, Bendechache M. Brain 
tumor segmentation of MRI images: a comprehensive review on the application of 
artificial intelligence tools. Comput Biol Med January 2023;152:106405. 

[29] Aghamohammadi A, Ranjbarzadeh R, Naiemi F, Mogharrebi M, Dorosti S, 
Bendechache M. TPCNN: two-path convolutional neural network for tumor and 
liver segmentation in CT images using a novel encoding approach. Expert Syst Appl 
November 2021;183(30):115406. 

[30] Kazeminia S, Baur C, Kuijper A, van Ginneken B, Navab N, Albarqouni S, 
Mukhopadhyay A. GANs for medical image analysis. Artif Intell Med 2020. https:// 
doi.org/10.1016/j.artmed.2020.101938, Aug. 

[31] Bruno P, Calimeri F, Kitanidis AS, Momi EDe. Data reduction and data visualization 
for automatic diagnosis using gene expression and clinical data. Artif Intell Med 
JUL 2020;107:101884. https://doi.org/10.1016/j.artmed.2020.101884. 

[32] Lizarraga G, Li C, Cabrerizo M, Barker W, Loewenstein DA, Duara R, Adjouadi M. 
A neuroimaging web services interface as a cyber physical system for medical 
imaging and data management in brain research: design study. JMIR Med Inform 
Apr-Jun 2018;6(2):228–44. 

[33] Yuan J, Sartor EA, Au R, Kolachalama VB. Development and validation of an 
interpretable deep learning framework for Alzheimer’s disease classification. Brain 
2020;143(6):1920–33. https://doi.org/10.1093/brain/awaa137. June. 

[34] Li Qi. Overview of data visualization. Embodying Data June 2020:17–47. https:// 
doi.org/10.1007/978-981-15-5069-0_2. Published online 2020 Jun 20. 

[35] Seo K, Pan R, Lee D, Thiyyagura P, Chen K. Visualizing Alzheimer’s disease 
progression in low dimensional manifolds August 2019;5(8):e02216. 

[36] Blanken AE, Jang JY, Ho JK, Edmonds EC, Han SD, Bangen KJ, Nation DA. 
Distilling heterogeneity of mild cognitive impairment in the National Alzheimer 
Coordinating Center Database Using Latent Profile Analysis. JAMA Netw Open 
March 2020;3(3). 

[37] Liu X, Tosun D, Weiner MW, Schuff N. Locally linear embedding (LLE) for MRI 
based Alzheimer’s disease classification. Neuroimage December 2013;83:148–57. 

[38] Gerber S, Tasdizen T, Fletcher PT, Joshi S, Whitaker R. Manifold modeling for 
brain population analysis. Med Image Anal October 2010;14(5):643–53. 

[39] Berron D, van Westen D, Ossenkoppele R, Strandberg O, Hansson O. Medial 
temporal lobe connectivity and its associations with cognition in early Alzheimer’s 
disease. Brain April 2020;143(4):1233–48. 

[40] Montez T, Simon-Shlomo Poil BF, Jones I, Manshanden JPA, van Verbunt BW, 
Dijk AB, van Brussaard A, Ooyen CJ, Stam P, Scheltens KLinkenkaer-Hansen. 
Altered temporal correlations in parietal alpha and prefrontal theta oscillations in 
early-stage alzheimer disease. Proc Natl Acad Sci U S A February 2009;106(5): 
1614–9. 

[41] Buckley RF, Schultz AP, Hedden T, Papp KV, Hanseeuw BJ, Marshall G, Sepulcre J, 
Smith EE, et al. Functional network integrity presages cognitive decline in 
preclinical alzheimer disease. Neurology July 2017;89(1):29–37. 

[42] Wisch JK, Roe CM, Babulal GM, Schindler SuE, Fagan AM, Benzinger TL, 
Morris JC, Ances BM. Resting state functional connectivity signature differentiates 
cognitively Normal from individuals who convert to symptomatic alzheimer 
disease. J Alzheimers Dis 2020;74(4):1085–95. 

[43] Toddenroth D, Ganslandt T, Castellanos I, Prokosch HU, Barkle T. Employing heat 
maps to mine associations in structured routine care data. Artif Intell Med February 
2014;60(2). 2 Pages: 79-88. 

[44] Klemm P, Lawonn K, Glasser S, Niemann U, Hegenscheid K, Volzke H, Preim B. 3D 
regression heat map analysis of population study data. IEEE Trans Vis Comput 
Graph January 2016;22(1):81–90. 

[45] Qiu S, Joshi PS, Miller MI, Xue CH. Development and validation of an interpretable 
deep learning framework for Alzheimer’s disease classification. Brain June 2020; 
143(6):1920–33. 

[46] Jelistratova I, Teipel SJ, Grothe MJ, Michel J. Longitudinal validity of PET-based 
staging of regional amyloid deposition. Hum Brain Mapp 2020. https://doi.org/ 
10.1002/hbm.25121. Early Access: July. 

[47] Ossenkoppele R, Jansen WJ, Rabinovici GD, Knol DL, van der Flier WM, van 
Berckel BNM, et al. Prevalence of amyloid PET positivity in dementia syndromes a 
meta-analysis. JAMA May 2015;313(19):1939–49. 

[48] Landau SM, Breault C, Joshi AD, Pontecorvo M, Mathis CA, Jagust WJ, Mintun MA. 
Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing 
radiotracers and quantification methods. J Nucl Med January 2013;54(1):70–7. 

[49] Grothe MJ, Barthel H, Sepulcre J, Dyrba M, Sabri O, Teipel SJ. In vivo staging of 
regional amyloid deposition. Neurology November 2017;89(20):2031–8. 

[50] Parbo P, Ismail R, Hansen KV, Amidi A, Mårup FH, Gottrup H, Brændgaard H, 
Eriksson BO, Eskildsen SF, Lund TE, et al. Brain inflammation accompanies 
amyloid in the majority of mild cognitive impairment cases due to Alzheimer’s 
disease. Brain May 2017;140(7):2002–11. 

[51] Loewenstein DA, Lizarraga G, Adjouadi M, Barker WW, Greig-Custo MT, Penate A, 
Shea YF, Behar R, Ollarves A, Robayo C, Hanson K, Marsiske M, Burke S, Ertekin- 
Taner N, Vaillancourt D, Santi SDe, Golde T, Duara RR, Rosselli MM. Effect of age, 
ethnicity, sex, cognitive status and APOE genotype on amyloid load and the 
threshold for amyloid positivity. UNSP Neuroimage Clin 2019;22:101800. PMID: 
30991618. 

[52] Qiu S, Joshi PS, Miller MI, Xue CH. Development and validation of an interpretable 
deep learning framework for Alzheimer’s disease classification. Brain June 2020; 
143(6):1920–33. 

[53] Crane PK, Carle A, Gibbons LE, Insel P, Mackin RS, Gross A, Jones RN, 
Mukherjee S, Curtis SM, Harvey D, Weiner M, Mungas, for the Alzheimer’s Disease 
Neuroimaging Initiative. Development and assessment of a composite score for 
memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging 
Behav 2012 Dec;6(4):502–16. 

[54] Liu M, Zhang J, Adeli E, Shen D. Joint classification and regression via deep multi- 
task multi-channel learning for Alzheimer’s disease diagnosis. IEEE Trans Biomed 
Eng 2018;66:1195–206. https://doi.org/10.1109/TBME.2018.2869989. 

[55] Zhu X, Suk H-I, Lee S-W, Shen D. Canonical feature selection for joint regression 
and multi-class identification in Alzheimer’s disease diagnosis. Brain Imaging 
Behav 2016;10:818–28. https://doi.org/10.1007/s11682-015-9430-9434. 

[56] Shi J, Zheng X, Li Y, Zhang Q, Ying S. Multimodal neuroimaging feature learning 
with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s 
disease. IEEE J Biomed Health Inform 2018;22(1):173–83. https://doi.org/ 
10.1109/JBHI.2017.2655720. 

[57] Lin WM, Gao QQ, Tong T. Multiclass diagnosis of stages of Alzheimer’s disease 
using linear discriminant analysis scoring for multimodal data. Comput Biol Med 
Jul 2021;134:104478. 

[58] Fang C, Li C, Forouzannezhad P, Cabrerizo M, Curiel RE, Loewenstein D, Duara R, 
Adjouadi M. Gaussian discriminative component analysis for early detection of 
Alzheimer’s disease: a supervised dimensionality reduction algorithm. J Neurosci 
Methods October 2020;344:108856. PMID: 32663548. 

[59] ’Bryant SE, Waring SC, Cullum CM. Staging dementia using clinical dementia 
rating scale sum of boxes scores: a Texas Alzheimer’s Research Consortium Study. 
Arch Neurol 2008;65(8):1091–5. https://doi.org/10.1001/archneur.65.8.1091. 

M. Eslami et al.                                                                                                                                                                                                                                 

https://doi.org/10.1007/s11682-020-00283-w
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052333242225
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052333242225
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052333242225
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052333470335
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052333470335
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052333470335
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334182295
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334182295
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334182295
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334217085
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334217085
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334217085
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334217085
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334342485
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334342485
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334342485
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334360445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334360445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334360445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334372315
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334372315
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334579805
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334579805
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334579805
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052334579805
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335151185
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335151185
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335151185
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335219545
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335219545
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335219545
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335219545
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335254715
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335254715
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335254715
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335254715
https://doi.org/10.3389/fnagi.2022.810873
https://doi.org/10.3389/fnagi.2022.810873
https://doi.org/10.3233/JAD-210064
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335269485
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335269485
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335269485
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335464245
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335464245
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335464245
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052335464245
https://doi.org/10.1016/j.artmed.2020.101938, Aug
https://doi.org/10.1016/j.artmed.2020.101938, Aug
https://doi.org/10.1016/j.artmed.2020.101884
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052336289135
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052336289135
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052336289135
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052336289135
https://doi.org/10.1093/brain/awaa137
https://doi.org/10.1007/978-981-15-5069-0_2
https://doi.org/10.1007/978-981-15-5069-0_2
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340152496
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340152496
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340275816
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340275816
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340275816
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340275816
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340288116
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340288116
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340322556
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340322556
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340342916
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340342916
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340342916
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340404326
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340404326
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340404326
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340404326
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340404326
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340424916
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340424916
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340424916
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340434676
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340434676
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340434676
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340434676
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351034294
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351034294
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351034294
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340569606
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340569606
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052340569606
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052341136176
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052341136176
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052341136176
https://doi.org/10.1002/hbm.25121
https://doi.org/10.1002/hbm.25121
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052341583296
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052341583296
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052341583296
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342117776
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342117776
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342117776
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342128076
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342128076
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342140346
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342140346
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342140346
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342140346
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351041445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351041445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351041445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351041445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351041445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351041445
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342279186
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342279186
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342279186
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342539726
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342539726
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342539726
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342539726
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052342539726
https://doi.org/10.1109/TBME.2018.2869989
https://doi.org/10.1007/s11682-015-9430-9434
https://doi.org/10.1109/JBHI.2017.2655720
https://doi.org/10.1109/JBHI.2017.2655720
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351304764
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351304764
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052351304764
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052343067386
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052343067386
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052343067386
http://refhub.elsevier.com/S0933-3657(23)00057-X/rf202304052343067386
https://doi.org/10.1001/archneur.65.8.1091

	A unique color-coded visualization system with multimodal information fusion and deep learning in a longitudinal study of A ...
	1 Introduction
	2 Methods
	2.1 Study design
	2.2 Color coding
	2.3 Machine learning architecture
	2.4 Training and evaluation

	3 Results
	3.1 Comparison to other methods
	3.2 Extending the 2D visualization platform to 3D

	4 Discussion
	4.1 Future work

	5 Conclusion
	Funding
	Declaration of competing interest
	Appendix A Supplementary data
	References


